
NetConf - IPv6 Developments

USAGI/WIDE Project / Keio University

Hideaki YOSHIFUJI
<yoshfuji@linux-ipv6.org>

July 14th, 2004

$Id: netconf-usagi.mgp,v 1.5.2.4 2004/07/16 09:08:55 yoshfuji Exp $
Copyright (C)2002,2003,2004 YOSHIFUJI Hideaki. All Rights Reserved.

Copyright (C)2002,2003,2004 USAGI/WIDE Project. All Rights Reserved.

 Table of Contents

 USAGI Project
 Overview
 Current Status
 Planned Patches / Features
 Current Development Details

 Future Plans

 USAGI Project
 Universal Playground forIPv6 / Rabbit
 Since fall, 2000
 Sponsored by WIDE Project

 Core members from research institutes and companies

 Collaborating with KAME, TAHI and Nautilus
 KAME (turtle) IPv6, IPsec,... for BSDs

 TAHI: Verification technology

 Nautilus: Network Mobility (NEMO)

 Goal
 To provide high quality IPv6 stack based on Linux

 USAGI Project’s Target Areas

 Target Areas (Past - Present)
 IPv6 API
 IPv6 core protocols

 IPsec
 Routing

 Packet filtering (Netfilter)

 Mobile IP

 Current Status (1)

 IPv6 API
 New RFCs available
 Basic API (RFC3493 aka RFC2553bis)
 probably done
 Advanced API (RFC3542 aka RFC2292bis)
 not yet

 Current Status (2)

 IPv6 Core Protocols
 USAGI Linux 2.6 (snapshot on Jan 19, 2004) got "IPv6 Ready

Logo"(tm) from IPv6 forum

 http://www.ipv6ready.org
 We see no grave issues

 Current Status (3)

 IPsec
 basically done

 Random fixes and improvements

 Racoon v2
 new specs are coming

 ESPv2, IKEv2
 Routing
 Router Selection / Load Sharing

 halfly done
 Policy Routing

 done (by ville) but check required
 Multicast Routing
 not yet

 Current Status (4)

 Packet filtering (nf_conntrack)
 Protocol independent netfilter infrastructure

 basically done

 do we need NAT? :-)

 Mobile IPv6
 under development

 will be available in this fall
 before ESTI in October
 Nautilus Project (another project of WIDE Project) are going to

develop NEMO on Linux

 Planned Changes

 IPv6 Core Protocol
 NDP
 Accuracy of timing

 run timer in NUD_REACHABLE
 eliminate neigh_sync()
 Neighbor state transition does not confrom to the spec.

 Fragmentation / MTU
 amount of "fragment header" (8 bytes) are always eaten in case

fragmentation is required.

 It’s time to remove "EXPERIMENTAL" and say Y!

 Planned Changes (cont.)

 Routing
 Router Selection / Load Sharing
 select preferred route from routes of same metric

 Policy Routing
 rule table
 default source address selection
 source address determination when looking up route

 Fragmentation / MTU Issue

 "Fragment header" (8 bytes) is always reserved.

IPv6

IPv6 Frag payload

IPv6 Frag payload

MTU

payload

sk_buff

reserved
MTU

 Fragmentation / MTU Fix

 When the packet size are reaching MTU, move tail of current
fragment to new one

 IPv6 Frag

MTU

payloadIPv6

IPv6
ip6_append_data()

IPv6Frag payload

reserved

MTU

trim

payload

IPv6Frag payload

 Router Selection

 Issue
 select one route from multiple routes of same metric

 rt6_dflt_pointer is too static and only for default routes

 Solution
 round-robin routes of same metric
 use "highest" preferred route

::/0

RTN_RTINFO

fib6_node

same metrics

rt6_info metrics

 Router Selection (cont.)

 Remaining Issue
 standard specifies hash-based selection

 how to select an entry in the list?
 Probably we always need to create host route for stable route

 Policy Routing

 Discussed with HUT GO/Core Project
 search first rule what the request conforms to.

 (*)if rule not found, route not found. (end)
 lookup route in the table which is specified by the rule

 if returned route conforms to the rule, use it. (end)
 otherwise, search next rule what the request conforms to.(repeat

from *)

 IPsec

 Add icmp type/code to selector
 Fix AH calculation w/ routing header

 Reply window seems strange

 Parse flow when sending messages via raw socket

 Current / Future Items

 Mobile IPv6
 Multicasting
 Copy "ipv4/ipmr.c" is not good, I think.

 Advanced API
 new API overrides the definition...
 probably we allocate new sockopt and provide old sockopt for compatibility
 Introduce u64 counters
 update unsigned long internally, and update u64 periodically

 everything-over-ipv{4,6} tunnel
 ipv{4,6} over ipv4 (tunl), replaces sitX (and greX?)

 ipv{4,6} over ipv6 (ip6tnl)

 Current / Future Items (random)

 Introducing expiration list for purging entries
 sorted by expiration time

 e.g. routing

 Introduce "long term" timer
 timer in HZ precision often overflows

 Restructuring ip directory

 Mobile IP

 Mobile IPv6 is now RFC
 RFC3775 "Mobility Support in IPv6"

 RFC3776 "Using IPsec to Protect Mobile IPv6 Signaling Between
Mobile Nodes and Home Agents"

 Packet Delivery Framework
 Bidirectional Tunneling

 Route Optimization

 Mobile IP (cont.)

 MH (Mobility Header)
 signaling

 extension header but nexthdr = NONE
 HoA option (in (special) destination header)
 for source HoA; source is MN

 Routing header option of type 2
 for destination HoA; destination is MN

 Basic Design

 Designed by
 USAGI and HUT (Helsinki Univ. of Tech.)
 Packet modifications, such as Bi-Tunnel, RO and IPsec, are done
inside kernel

 XFRM framework
 Build XFRM state respectively

 it manages packet mangling.
 like Binding Cache, but it is not the same.
 Standard IPv6-IPv6 tunnel
 for link-local protocol

 Signaling is handled in userspace daemon

 manages binding cache and XFRM policy/state

 Kernel User API

 XFRM
 ~1500 lines
 PF_MOBILITY(?)
 under discussion w/KAME

 XFRM State Management API

 current keys: (family, daddr, spi, proto)
 not sufficient (especially for mobile ip)
 userland daemon need to add/delete with specific source address
 struct xfrm_usersa_id {

 xfrm_address_t daddr;

 __u32 spi;

 __u16 family;

 __u8 proto;

 xfrm_address_t saddr; // NEW

 };

 This is probably good for xfrm6_tunnel management, too.
 We see "hashed" spi for xfrm6_tunnel.

 Mobile IP is a kind of tunnel, anyway.

 Binding Error Notification

 Binding Error will be pased to the userspace using new
XFRM_MSG_MIP6NOTIFY message

 Unexpected set of CoA and HoA

 unknown MH type

 this can be handled in userspace, directly

 Remaining issue

 HA shall not accept Home Registration without IPsec while HA
(Home Agent) may receive BU from MN as if HA is CN, which
is valid, without IPsec

 XFRM Selector extension, which allow us to use H bit in BU as a
selector

 pros: easy to impleent
 cons: MH "flag" is very local to BU (is a type of MH); a kind of layer violation
 Refer sec_path[] at in-kernel MH receiver

 pros: easy to implement
 cons: still needs in-kernel MH receiver

 Remaining issue (cont.)

 If we had IPsec information (such as protocol and algorithm)
notification mechanism, we could do everything in userspace

 pros: simpler and generic features in kernel
 cons: no such standards

 Remaining issue (cont.)

 IPsec and Mobile IP co-existence
 How to allow coexistence of IPsec and Mobile IP for same destination?
 Combining IPsec / Mobile IP Policies
 Allow multiple type of templates
 Merge them according to "meta-template"
 still under discussion

 Restructuring ip directory

 net/ip/ipv4
 - tcp.c, tcp_diag.c, tcp_input.c, tcp_minisocks.c, tcp_output.c,

tcp_timer.c + sctp_ipv4.c

 net/ip/ipv6
 + sctp_ipv6.c

 net/ip/tunnel

 net/ip/tcp
 + tcp.c, tcp_diag.c, tcp_input.c, tcp_minisocks.c, tcp_output.c,

tcp_timer.c

 net/ip/sctp
 - ipv6.c

 Request to Other Maintainers

 Please, please keep IPv6 in your mind.
 Expect extension headers

 Please do not make things depend on seeing inner "things"
(including headers)

 When you define API and/or see API, keep the viewpoint of
"protocol independency"

 use protocol independent address structures
 pointer to sockaddr{}

 sockaddr_storage{}

 sockaddr_in{}? hmm...
 u32? in_addr? What is it? :-)

